3.3.95 \(\int \frac {(a B+b B \cos (c+d x)) \sec ^3(c+d x)}{(a+b \cos (c+d x))^2} \, dx\) [295]

Optimal. Leaf size=123 \[ -\frac {2 b^3 B \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 \sqrt {a-b} \sqrt {a+b} d}+\frac {\left (a^2+2 b^2\right ) B \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac {b B \tan (c+d x)}{a^2 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 a d} \]

[Out]

1/2*(a^2+2*b^2)*B*arctanh(sin(d*x+c))/a^3/d-2*b^3*B*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^3/d/(
a-b)^(1/2)/(a+b)^(1/2)-b*B*tan(d*x+c)/a^2/d+1/2*B*sec(d*x+c)*tan(d*x+c)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {21, 2881, 3134, 3080, 3855, 2738, 211} \begin {gather*} -\frac {2 b^3 B \text {ArcTan}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 d \sqrt {a-b} \sqrt {a+b}}-\frac {b B \tan (c+d x)}{a^2 d}+\frac {B \left (a^2+2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}+\frac {B \tan (c+d x) \sec (c+d x)}{2 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x]^3)/(a + b*Cos[c + d*x])^2,x]

[Out]

(-2*b^3*B*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^3*Sqrt[a - b]*Sqrt[a + b]*d) + ((a^2 + 2*b^2)
*B*ArcTanh[Sin[c + d*x]])/(2*a^3*d) - (b*B*Tan[c + d*x])/(a^2*d) + (B*Sec[c + d*x]*Tan[c + d*x])/(2*a*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3080

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {(a B+b B \cos (c+d x)) \sec ^3(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=B \int \frac {\sec ^3(c+d x)}{a+b \cos (c+d x)} \, dx\\ &=\frac {B \sec (c+d x) \tan (c+d x)}{2 a d}+\frac {B \int \frac {\left (-2 b+a \cos (c+d x)+b \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx}{2 a}\\ &=-\frac {b B \tan (c+d x)}{a^2 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 a d}+\frac {B \int \frac {\left (a^2+2 b^2+a b \cos (c+d x)\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac {b B \tan (c+d x)}{a^2 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {\left (b^3 B\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{a^3}+\frac {\left (\left (a^2+2 b^2\right ) B\right ) \int \sec (c+d x) \, dx}{2 a^3}\\ &=\frac {\left (a^2+2 b^2\right ) B \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac {b B \tan (c+d x)}{a^2 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {\left (2 b^3 B\right ) \text {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^3 d}\\ &=-\frac {2 b^3 B \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 \sqrt {a-b} \sqrt {a+b} d}+\frac {\left (a^2+2 b^2\right ) B \tanh ^{-1}(\sin (c+d x))}{2 a^3 d}-\frac {b B \tan (c+d x)}{a^2 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.13, size = 239, normalized size = 1.94 \begin {gather*} \frac {B \left (\frac {8 b^3 \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2+b^2}}\right )}{\sqrt {-a^2+b^2}}-2 a^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-4 b^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 a^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+4 b^2 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {a^2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-\frac {a^2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-4 a b \tan (c+d x)\right )}{4 a^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a*B + b*B*Cos[c + d*x])*Sec[c + d*x]^3)/(a + b*Cos[c + d*x])^2,x]

[Out]

(B*((8*b^3*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] - 2*a^2*Log[Cos[(c + d*x)/2]
 - Sin[(c + d*x)/2]] - 4*b^2*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 2*a^2*Log[Cos[(c + d*x)/2] + Sin[(c +
d*x)/2]] + 4*b^2*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + a^2/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 - a^2/
(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 - 4*a*b*Tan[c + d*x]))/(4*a^3*d)

________________________________________________________________________________________

Maple [A]
time = 0.44, size = 194, normalized size = 1.58

method result size
derivativedivides \(\frac {2 B \left (-\frac {1}{4 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-a -2 b}{4 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (a^{2}+2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 a^{3}}-\frac {b^{3} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {1}{4 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-a -2 b}{4 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{4 a^{3}}\right )}{d}\) \(194\)
default \(\frac {2 B \left (-\frac {1}{4 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-a -2 b}{4 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (a^{2}+2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 a^{3}}-\frac {b^{3} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{a^{3} \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {1}{4 a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-a -2 b}{4 a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{4 a^{3}}\right )}{d}\) \(194\)
risch \(-\frac {i B \left (a \,{\mathrm e}^{3 i \left (d x +c \right )}+2 b \,{\mathrm e}^{2 i \left (d x +c \right )}-a \,{\mathrm e}^{i \left (d x +c \right )}+2 b \right )}{d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d \,a^{3}}+\frac {b^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+a \sqrt {-a^{2}+b^{2}}}{b \sqrt {-a^{2}+b^{2}}}\right ) B}{\sqrt {-a^{2}+b^{2}}\, d \,a^{3}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{2 d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B \,b^{2}}{a^{3} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{2 d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B \,b^{2}}{a^{3} d}\) \(308\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

2/d*B*(-1/4/a/(tan(1/2*d*x+1/2*c)+1)^2-1/4*(-a-2*b)/a^2/(tan(1/2*d*x+1/2*c)+1)+1/4*(a^2+2*b^2)/a^3*ln(tan(1/2*
d*x+1/2*c)+1)-b^3/a^3/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+1/4/a/(tan(1/2*
d*x+1/2*c)-1)^2-1/4*(-a-2*b)/a^2/(tan(1/2*d*x+1/2*c)-1)+1/4/a^3*(-a^2-2*b^2)*ln(tan(1/2*d*x+1/2*c)-1))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

________________________________________________________________________________________

Fricas [A]
time = 0.52, size = 487, normalized size = 3.96 \begin {gather*} \left [-\frac {2 \, \sqrt {-a^{2} + b^{2}} B b^{3} \cos \left (d x + c\right )^{2} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - {\left (B a^{4} + B a^{2} b^{2} - 2 \, B b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (B a^{4} + B a^{2} b^{2} - 2 \, B b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (B a^{4} - B a^{2} b^{2} - 2 \, {\left (B a^{3} b - B a b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right )^{2}}, -\frac {4 \, \sqrt {a^{2} - b^{2}} B b^{3} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{2} - {\left (B a^{4} + B a^{2} b^{2} - 2 \, B b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (B a^{4} + B a^{2} b^{2} - 2 \, B b^{4}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (B a^{4} - B a^{2} b^{2} - 2 \, {\left (B a^{3} b - B a b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{5} - a^{3} b^{2}\right )} d \cos \left (d x + c\right )^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/4*(2*sqrt(-a^2 + b^2)*B*b^3*cos(d*x + c)^2*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt
(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2))
 - (B*a^4 + B*a^2*b^2 - 2*B*b^4)*cos(d*x + c)^2*log(sin(d*x + c) + 1) + (B*a^4 + B*a^2*b^2 - 2*B*b^4)*cos(d*x
+ c)^2*log(-sin(d*x + c) + 1) - 2*(B*a^4 - B*a^2*b^2 - 2*(B*a^3*b - B*a*b^3)*cos(d*x + c))*sin(d*x + c))/((a^5
 - a^3*b^2)*d*cos(d*x + c)^2), -1/4*(4*sqrt(a^2 - b^2)*B*b^3*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin
(d*x + c)))*cos(d*x + c)^2 - (B*a^4 + B*a^2*b^2 - 2*B*b^4)*cos(d*x + c)^2*log(sin(d*x + c) + 1) + (B*a^4 + B*a
^2*b^2 - 2*B*b^4)*cos(d*x + c)^2*log(-sin(d*x + c) + 1) - 2*(B*a^4 - B*a^2*b^2 - 2*(B*a^3*b - B*a*b^3)*cos(d*x
 + c))*sin(d*x + c))/((a^5 - a^3*b^2)*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} B \int \frac {\sec ^{3}{\left (c + d x \right )}}{a + b \cos {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)**3/(a+b*cos(d*x+c))**2,x)

[Out]

B*Integral(sec(c + d*x)**3/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 221 vs. \(2 (110) = 220\).
time = 0.51, size = 221, normalized size = 1.80 \begin {gather*} -\frac {\frac {4 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} B b^{3}}{\sqrt {a^{2} - b^{2}} a^{3}} - \frac {{\left (B a^{2} + 2 \, B b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} + \frac {{\left (B a^{2} + 2 \, B b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac {2 \, {\left (B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))*sec(d*x+c)^3/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

-1/2*(4*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/
2*c))/sqrt(a^2 - b^2)))*B*b^3/(sqrt(a^2 - b^2)*a^3) - (B*a^2 + 2*B*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3
 + (B*a^2 + 2*B*b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 - 2*(B*a*tan(1/2*d*x + 1/2*c)^3 + 2*B*b*tan(1/2*d*
x + 1/2*c)^3 + B*a*tan(1/2*d*x + 1/2*c) - 2*B*b*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^2*a^2))/d

________________________________________________________________________________________

Mupad [B]
time = 1.83, size = 1099, normalized size = 8.93 \begin {gather*} \frac {\frac {B\,b^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}-\frac {B\,b^2\,\sin \left (c+d\,x\right )}{2}+\frac {B\,b^2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )}{2}}{a\,d\,\left (a^2-b^2\right )\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}+\frac {a\,\left (\frac {B\,\sin \left (c+d\,x\right )}{2}+\frac {B\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{2}+\frac {B\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )}{2}\right )}{d\,\left (a^2-b^2\right )\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}-\frac {B\,b\,\sin \left (2\,c+2\,d\,x\right )}{2\,d\,\left (a^2-b^2\right )\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}-\frac {B\,b^4\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a^3\,d\,\left (a^2-b^2\right )\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}+\frac {B\,b^3\,\sin \left (2\,c+2\,d\,x\right )}{2\,a^2\,d\,\left (a^2-b^2\right )\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}-\frac {B\,b^4\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )}{a^3\,d\,\left (a^2-b^2\right )\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}-\frac {B\,b^3\,\mathrm {atan}\left (\frac {\left (a^9\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+8\,b^7\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-8\,b^9\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+8\,a^2\,b^7\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^4\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-3\,a^5\,b^4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-2\,a^6\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,a^7\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^8\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a\,b^2-a^3\right )\,\left (a^7+2\,a^5\,b^2-3\,a^3\,b^4\right )}\right )\,1{}\mathrm {i}}{a^3\,d\,\sqrt {b^2-a^2}\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}-\frac {B\,b^3\,\mathrm {atan}\left (\frac {\left (a^9\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+8\,b^7\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-8\,b^9\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+8\,a^2\,b^7\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^4\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-3\,a^5\,b^4\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-2\,a^6\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,a^7\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^8\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a\,b^2-a^3\right )\,\left (a^7+2\,a^5\,b^2-3\,a^3\,b^4\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )\,1{}\mathrm {i}}{a^3\,d\,\sqrt {b^2-a^2}\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^3*(a + b*cos(c + d*x))^2),x)

[Out]

((B*b^2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 - (B*b^2*sin(c + d*x))/2 + (B*b^2*atanh(sin(c/2 + (d*x
)/2)/cos(c/2 + (d*x)/2))*cos(2*c + 2*d*x))/2)/(a*d*(a^2 - b^2)*(cos(2*c + 2*d*x)/2 + 1/2)) + (a*((B*sin(c + d*
x))/2 + (B*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/2 + (B*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*c
os(2*c + 2*d*x))/2))/(d*(a^2 - b^2)*(cos(2*c + 2*d*x)/2 + 1/2)) - (B*b*sin(2*c + 2*d*x))/(2*d*(a^2 - b^2)*(cos
(2*c + 2*d*x)/2 + 1/2)) - (B*b^4*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(a^3*d*(a^2 - b^2)*(cos(2*c + 2
*d*x)/2 + 1/2)) + (B*b^3*sin(2*c + 2*d*x))/(2*a^2*d*(a^2 - b^2)*(cos(2*c + 2*d*x)/2 + 1/2)) - (B*b^3*atan(((a^
9*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 8*b^7*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 8*b^9*sin(c/2 + (d*x)/2)
*(b^2 - a^2)^(1/2) + 8*a^2*b^7*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 3*a^4*b^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)
^(1/2) - 3*a^5*b^4*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - 2*a^6*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 2*a
^7*b^2*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^8*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))*1i)/(cos(c/2 + (d*x)
/2)*(a*b^2 - a^3)*(a^7 - 3*a^3*b^4 + 2*a^5*b^2)))*1i)/(a^3*d*(b^2 - a^2)^(1/2)*(cos(2*c + 2*d*x)/2 + 1/2)) - (
B*b^3*atan(((a^9*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 8*b^7*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 8*b^9*sin
(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 8*a^2*b^7*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 3*a^4*b^5*sin(c/2 + (d*x)
/2)*(b^2 - a^2)^(1/2) - 3*a^5*b^4*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - 2*a^6*b^3*sin(c/2 + (d*x)/2)*(b^2 - a
^2)^(1/2) + 2*a^7*b^2*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^8*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))*1i)/(
cos(c/2 + (d*x)/2)*(a*b^2 - a^3)*(a^7 - 3*a^3*b^4 + 2*a^5*b^2)))*cos(2*c + 2*d*x)*1i)/(a^3*d*(b^2 - a^2)^(1/2)
*(cos(2*c + 2*d*x)/2 + 1/2)) - (B*b^4*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(2*c + 2*d*x))/(a^3*d*(a
^2 - b^2)*(cos(2*c + 2*d*x)/2 + 1/2))

________________________________________________________________________________________